p-adic valuation of harmonic sums and their connections with Wolstenholme primes

نویسندگان

چکیده

We explore a conjecture posed by Eswarathasan and Levine on the distribution of p-adic valuations harmonic numbers $$H(n)=1+1/2+\cdots +1/n$$ that states set $$J_p$$ positive integers n such p divides numerator H(n) is finite. proved two results, using modular-arithmetic approach, one for non-Wolstenholme primes other Wolstenholme primes, an anomalous asymptotic behaviour valuation $$H(p^mn)$$ when equals exactly 3.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wolstenholme Type Theorem for Multiple Harmonic Sums

for complex variables s1, . . . , sl satisfying Re(sj) + · · · + Re(sl) > l − j + 1 for all j = 1, . . . , l. We call |s| = s1 + · · · + sl the weight and denote the length by l(s). The special values of multiple zeta functions at positive integers have significant arithmetic and algebraic meanings, whose defining series (1.1) will be called MZV series, including the divergent ones like ζ(. . ....

متن کامل

SUPERSINGULAR PRIMES AND p-ADIC L-FUNCTIONS

We discuss the problem of finding a p-adic L-function attached to an elliptic curve with complex multiplication over an imaginary quadratic field K, for the case of a prime where the curve has supersingular reduction. While the case of primes of ordinary reduction has been extensively studied and is essentially understood, yielding many deep and interesting results, basic questions remain unans...

متن کامل

On Wieferich primes and p-adic logarithms∗†

We shall make a slight improvement to a result of p-adic logarithms which gives a nontrivial upper bound for the exponent of p dividing the Fermat quotient x − 1.

متن کامل

T-ADIC L-FUNCTIONS OF p-ADIC EXPONENTIAL SUMS

The T -adic deformation of p-adic exponential sums is defined. It interpolates all classical p-power order exponential sums over a finite field. Its generating L-function is a T -adic entire function. We give a lower bound for its T -adic Newton polygon and show that the lower bound is often sharp. We also study the variation of this L-function in an algebraic family, in particular, the T -adic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Pure and Applied Mathematics

سال: 2023

ISSN: ['0019-5588', '0975-7465', '2455-0000']

DOI: https://doi.org/10.1007/s13226-023-00387-1